scalaz

Enum

trait Enum[F] extends Order[F]

An scalaz.Orderable with discrete values.

Self Type
Enum[F]
Source
Enum.scala
Linear Supertypes
Order[F], Equal[F], AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Enum
  2. Order
  3. Equal
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Type Members

  1. trait EnumLaw extends OrderLaw

  2. trait EqualLaw extends AnyRef

    Definition Classes
    Equal
  3. trait OrderLaw extends EqualLaw

    Definition Classes
    Order

Abstract Value Members

  1. abstract def order(x: F, y: F): Ordering

    Definition Classes
    Order
  2. abstract def pred(a: F): F

  3. abstract def succ(a: F): F

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def apply(x: F, y: F): Ordering

    Definition Classes
    Order
  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def contramap[B](f: (B) ⇒ F): Order[B]

    Definition Classes
    OrderEqual
  10. def enumLaw: EnumLaw

  11. val enumSyntax: EnumSyntax[F]

  12. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  13. def equal(x: F, y: F): Boolean

    Definition Classes
    OrderEqual
  14. def equalIsNatural: Boolean

    returns

    true, if equal(f1, f2) is known to be equivalent to f1 == f2

    Definition Classes
    Equal
  15. def equalLaw: EqualLaw

    Definition Classes
    Equal
  16. val equalSyntax: EqualSyntax[F]

    Definition Classes
    Equal
  17. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  18. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  19. def from(a: F): EphemeralStream[F]

  20. def fromStep(n: Int, a: F): EphemeralStream[F]

  21. def fromStepTo(n: Int, a: F, z: F): EphemeralStream[F]

  22. def fromStepToL(n: Int, a: F, z: F): List[F]

  23. def fromTo(a: F, z: F): EphemeralStream[F]

  24. def fromToL(a: F, z: F): List[F]

  25. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  26. def greaterThan(x: F, y: F): Boolean

    Definition Classes
    Order
  27. def greaterThanOrEqual(x: F, y: F): Boolean

    Definition Classes
    Order
  28. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  29. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  30. def lessThan(x: F, y: F): Boolean

    Definition Classes
    Order
  31. def lessThanOrEqual(x: F, y: F): Boolean

    Definition Classes
    Order
  32. def max: Option[F]

  33. def max(x: F, y: F): F

    Definition Classes
    Order
  34. def min: Option[F]

  35. def min(x: F, y: F): F

    Definition Classes
    Order
  36. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  37. final def notify(): Unit

    Definition Classes
    AnyRef
  38. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  39. def orderLaw: OrderLaw

    Definition Classes
    Order
  40. val orderSyntax: OrderSyntax[F]

    Definition Classes
    Order
  41. def predState[X](f: (F) ⇒ X): State[F, X]

    Produce a state value that executes the predecessor (pred) on each spin and executing the given function on the current value.

    Produce a state value that executes the predecessor (pred) on each spin and executing the given function on the current value. This is useful to implement decremental looping. Evaluating the state value requires a beginning to decrement from.

    f

    The function to execute on each spin of the state value.

  42. def predStateMax[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]

    Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function.

    Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The mapping function.

  43. def predStateMaxM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]

    Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function.

    Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function. This is useful to implement decremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The binding function.

  44. def predStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y

    Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given mapping function.

    Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The mapping function.

    m

    The implementation of the zero function from which to start.

  45. def predStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y

    Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given binding function.

    Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given binding function. This is useful to implement decremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The binding function.

    m

    The implementation of the zero function from which to start.

  46. def predn(n: Int, a: F): F

  47. def predx: Kleisli[Option, F, F]

    Moves to the predecessor, unless at the minimum.

  48. final def reverseOrder: Order[F]

    Definition Classes
    Order
  49. def succState[X](f: (F) ⇒ X): State[F, X]

    Produce a state value that executes the successor (succ) on each spin and executing the given function on the current value.

    Produce a state value that executes the successor (succ) on each spin and executing the given function on the current value. This is useful to implement incremental looping. Evaluating the state value requires a beginning to increment from.

    f

    The function to execute on each spin of the state value.

  50. def succStateMin[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]

    Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function.

    Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function. This is useful to implement incremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The mapping function.

  51. def succStateMinM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]

    Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function.

    Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function. This is useful to implement incremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The binding function.

  52. def succStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y

    Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given mapping function.

    Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given mapping function. This is useful to implement incremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The mapping function.

    m

    The implementation of the zero function from which to start.

  53. def succStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y

    Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given binding function.

    Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given binding function. This is useful to implement incremental looping.

    f

    The function to execute on each spin of the state value.

    k

    The binding function.

    m

    The implementation of the zero function from which to start.

  54. def succn(n: Int, a: F): F

  55. def succx: Kleisli[Option, F, F]

    Moves to the successor, unless at the maximum.

  56. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  57. def toScalaOrdering: scala.math.Ordering[F]

    Definition Classes
    Order
    Note

    Order.fromScalaOrdering(toScalaOrdering).order(x, y)

    this.order(x, y)

  58. def toString(): String

    Definition Classes
    AnyRef → Any
  59. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  60. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  61. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Order[F]

Inherited from Equal[F]

Inherited from AnyRef

Inherited from Any

Ungrouped