scalaz

# Enum

#### trait Enum[F] extends Order[F]

An scalaz.Orderable with discrete values.

Self Type
Enum[F]
Source
Enum.scala
Linear Supertypes
Order[F], Equal[F], AnyRef, Any
Known Subclasses
Ordering
1. Alphabetic
2. By inheritance
Inherited
1. Enum
2. Order
3. Equal
4. AnyRef
5. Any
1. Hide All
2. Show all
Visibility
1. Public
2. All

### Type Members

2. #### trait EqualLaw extends AnyRef

Definition Classes
Equal
3. #### trait OrderLaw extends EqualLaw

Definition Classes
Order

### Abstract Value Members

1. #### abstract def order(x: F, y: F): Ordering

Definition Classes
Order

### Concrete Value Members

1. #### final def !=(arg0: AnyRef): Boolean

Definition Classes
AnyRef
2. #### final def !=(arg0: Any): Boolean

Definition Classes
Any
3. #### final def ##(): Int

Definition Classes
AnyRef → Any
4. #### final def ==(arg0: AnyRef): Boolean

Definition Classes
AnyRef
5. #### final def ==(arg0: Any): Boolean

Definition Classes
Any
6. #### def apply(x: F, y: F): Ordering

Definition Classes
Order
7. #### final def asInstanceOf[T0]: T0

Definition Classes
Any
8. #### def clone(): AnyRef

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( ... )
9. #### def contramap[B](f: (B) ⇒ F): Order[B]

Definition Classes
OrderEqual

12. #### final def eq(arg0: AnyRef): Boolean

Definition Classes
AnyRef
13. #### def equal(x: F, y: F): Boolean

Definition Classes
OrderEqual
14. #### def equalIsNatural: Boolean

returns

true, if equal(f1, f2) is known to be equivalent to f1 == f2

Definition Classes
Equal
15. #### def equalLaw: EqualLaw

Definition Classes
Equal
16. #### val equalSyntax: EqualSyntax[F]

Definition Classes
Equal
17. #### def equals(arg0: Any): Boolean

Definition Classes
AnyRef → Any
18. #### def finalize(): Unit

Attributes
protected[java.lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )

25. #### final def getClass(): Class[_]

Definition Classes
AnyRef → Any
26. #### def greaterThan(x: F, y: F): Boolean

Definition Classes
Order
27. #### def greaterThanOrEqual(x: F, y: F): Boolean

Definition Classes
Order
28. #### def hashCode(): Int

Definition Classes
AnyRef → Any
29. #### final def isInstanceOf[T0]: Boolean

Definition Classes
Any
30. #### def lessThan(x: F, y: F): Boolean

Definition Classes
Order
31. #### def lessThanOrEqual(x: F, y: F): Boolean

Definition Classes
Order

33. #### def max(x: F, y: F): F

Definition Classes
Order

35. #### def min(x: F, y: F): F

Definition Classes
Order
36. #### final def ne(arg0: AnyRef): Boolean

Definition Classes
AnyRef
37. #### final def notify(): Unit

Definition Classes
AnyRef
38. #### final def notifyAll(): Unit

Definition Classes
AnyRef
39. #### def orderLaw: OrderLaw

Definition Classes
Order
40. #### val orderSyntax: OrderSyntax[F]

Definition Classes
Order
41. #### def predState[X](f: (F) ⇒ X): State[F, X]

Produce a state value that executes the predecessor (pred) on each spin and executing the given function on the current value.

Produce a state value that executes the predecessor (pred) on each spin and executing the given function on the current value. This is useful to implement decremental looping. Evaluating the state value requires a beginning to decrement from.

f

The function to execute on each spin of the state value.

42. #### def predStateMax[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function.

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

43. #### def predStateMaxM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function.

Produce a value that starts at the maximum (if it exists) and decrements through a state value with the given binding function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

44. #### def predStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y

Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given mapping function.

Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given mapping function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

m

The implementation of the zero function from which to start.

45. #### def predStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y

Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given binding function.

Produce a value that starts at zero (Monoid.zero) and decrements through a state value with the given binding function. This is useful to implement decremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

m

The implementation of the zero function from which to start.

47. #### def predx: Kleisli[Option, F, F]

Moves to the predecessor, unless at the minimum.

48. #### final def reverseOrder: Order[F]

Definition Classes
Order
49. #### def succState[X](f: (F) ⇒ X): State[F, X]

Produce a state value that executes the successor (succ) on each spin and executing the given function on the current value.

Produce a state value that executes the successor (succ) on each spin and executing the given function on the current value. This is useful to implement incremental looping. Evaluating the state value requires a beginning to increment from.

f

The function to execute on each spin of the state value.

50. #### def succStateMin[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y): Option[Y]

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function.

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given mapping function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

51. #### def succStateMinM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y]): Option[Y]

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function.

Produce a value that starts at the minimum (if it exists) and increments through a state value with the given binding function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

52. #### def succStateZero[X, Y](f: (F) ⇒ X, k: (X) ⇒ Y)(implicit m: Monoid[F]): Y

Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given mapping function.

Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given mapping function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The mapping function.

m

The implementation of the zero function from which to start.

53. #### def succStateZeroM[X, Y](f: (F) ⇒ X, k: (X) ⇒ State[F, Y])(implicit m: Monoid[F]): Y

Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given binding function.

Produce a value that starts at zero (Monoid.zero) and increments through a state value with the given binding function. This is useful to implement incremental looping.

f

The function to execute on each spin of the state value.

k

The binding function.

m

The implementation of the zero function from which to start.

55. #### def succx: Kleisli[Option, F, F]

Moves to the successor, unless at the maximum.

56. #### final def synchronized[T0](arg0: ⇒ T0): T0

Definition Classes
AnyRef
57. #### def toScalaOrdering: scala.math.Ordering[F]

Definition Classes
Order
Note

Order.fromScalaOrdering(toScalaOrdering).order(x, y)

### this.order(x, y)

58. #### def toString(): String

Definition Classes
AnyRef → Any
59. #### final def wait(): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
60. #### final def wait(arg0: Long, arg1: Int): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )
61. #### final def wait(arg0: Long): Unit

Definition Classes
AnyRef
Annotations
@throws( ... )