scalaz.effect

KleisliCatchIO

trait KleisliCatchIO[M[+_], R] extends MonadCatchIO[[α]Kleisli[M, R, α]] with KleisliLiftIO[M, R] with KleisliMonadReader[M, R]

Source
KleisliEffect.scala
Linear Supertypes
KleisliMonadReader[M, R], KleisliMonad[M, R], KleisliApplicative[M, R], KleisliApply[M, R], KleisliFunctor[M, R], MonadReader[[s, a]Kleisli[M, s, a], R], KleisliLiftIO[M, R], MonadCatchIO[[α]Kleisli[M, R, α]], MonadIO[[α]Kleisli[M, R, α]], Monad[[α]Kleisli[M, R, α]], Bind[[α]Kleisli[M, R, α]], Applicative[[α]Kleisli[M, R, α]], Apply[[α]Kleisli[M, R, α]], Functor[[α]Kleisli[M, R, α]], LiftIO[[α]Kleisli[M, R, α]], AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. KleisliCatchIO
  2. KleisliMonadReader
  3. KleisliMonad
  4. KleisliApplicative
  5. KleisliApply
  6. KleisliFunctor
  7. MonadReader
  8. KleisliLiftIO
  9. MonadCatchIO
  10. MonadIO
  11. Monad
  12. Bind
  13. Applicative
  14. Apply
  15. Functor
  16. LiftIO
  17. AnyRef
  18. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Type Members

  1. trait ApplicativeLaw extends FunctorLaw

    Definition Classes
    Applicative
  2. trait FunctorLaw extends AnyRef

    Definition Classes
    Functor
  3. trait MonadLaw extends ApplicativeLaw

    Definition Classes
    Monad

Abstract Value Members

  1. implicit abstract def F: MonadCatchIO[M]

    Definition Classes
    KleisliCatchIO → KleisliMonadReader → KleisliMonad → KleisliApplicative → KleisliApply → KleisliFunctor
  2. implicit abstract def L: LiftIO[M]

    Definition Classes
    KleisliLiftIO

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def ap[A, B](fa: ⇒ Kleisli[M, R, A])(f: ⇒ Kleisli[M, R, (A) ⇒ B]): Kleisli[M, R, B]

    Definition Classes
    KleisliApply → Apply
  7. def ap2[A, B, C](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B])(f: Kleisli[M, R, (A, B) ⇒ C]): Kleisli[M, R, C]

    Definition Classes
    Apply
  8. def ap3[A, B, C, D](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C])(f: Kleisli[M, R, (A, B, C) ⇒ D]): Kleisli[M, R, D]

    Definition Classes
    Apply
  9. def ap4[A, B, C, D, E](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D])(f: Kleisli[M, R, (A, B, C, D) ⇒ E]): Kleisli[M, R, E]

    Definition Classes
    Apply
  10. def ap5[A, B, C, D, E, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E])(f: Kleisli[M, R, (A, B, C, D, E) ⇒ R]): Kleisli[M, R, R]

    Definition Classes
    Apply
  11. def ap6[A, B, C, D, E, FF, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E], ff: ⇒ Kleisli[M, R, FF])(f: Kleisli[M, R, (A, B, C, D, E, FF) ⇒ R]): Kleisli[M, R, R]

    Definition Classes
    Apply
  12. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E], ff: ⇒ Kleisli[M, R, FF], fg: ⇒ Kleisli[M, R, G])(f: Kleisli[M, R, (A, B, C, D, E, FF, G) ⇒ R]): Kleisli[M, R, R]

    Definition Classes
    Apply
  13. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E], ff: ⇒ Kleisli[M, R, FF], fg: ⇒ Kleisli[M, R, G], fh: ⇒ Kleisli[M, R, H])(f: Kleisli[M, R, (A, B, C, D, E, FF, G, H) ⇒ R]): Kleisli[M, R, R]

    Definition Classes
    Apply
  14. def apF[A, B](f: ⇒ Kleisli[M, R, (A) ⇒ B]): (Kleisli[M, R, A]) ⇒ Kleisli[M, R, B]

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  15. def applicativeLaw: ApplicativeLaw

    Definition Classes
    Applicative
  16. val applicativeSyntax: ApplicativeSyntax[[α]Kleisli[M, R, α]]

    Definition Classes
    Applicative
  17. def apply[A, B](fa: Kleisli[M, R, A])(f: (A) ⇒ B): Kleisli[M, R, B]

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  18. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E], ff: ⇒ Kleisli[M, R, FF], fg: ⇒ Kleisli[M, R, G], fh: ⇒ Kleisli[M, R, H], fi: ⇒ Kleisli[M, R, I], fj: ⇒ Kleisli[M, R, J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): Kleisli[M, R, R]

    Definition Classes
    Apply
  19. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E], ff: ⇒ Kleisli[M, R, FF], fg: ⇒ Kleisli[M, R, G], fh: ⇒ Kleisli[M, R, H], fi: ⇒ Kleisli[M, R, I], fj: ⇒ Kleisli[M, R, J], fk: ⇒ Kleisli[M, R, K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): Kleisli[M, R, R]

    Definition Classes
    Apply
  20. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E], ff: ⇒ Kleisli[M, R, FF], fg: ⇒ Kleisli[M, R, G], fh: ⇒ Kleisli[M, R, H], fi: ⇒ Kleisli[M, R, I], fj: ⇒ Kleisli[M, R, J], fk: ⇒ Kleisli[M, R, K], fl: ⇒ Kleisli[M, R, L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): Kleisli[M, R, R]

    Definition Classes
    Apply
  21. def apply2[A, B, C](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B])(f: (A, B) ⇒ C): Kleisli[M, R, C]

    Definition Classes
    ApplicativeApply
  22. def apply3[A, B, C, D](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C])(f: (A, B, C) ⇒ D): Kleisli[M, R, D]

    Definition Classes
    Apply
  23. def apply4[A, B, C, D, E](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D])(f: (A, B, C, D) ⇒ E): Kleisli[M, R, E]

    Definition Classes
    Apply
  24. def apply5[A, B, C, D, E, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E])(f: (A, B, C, D, E) ⇒ R): Kleisli[M, R, R]

    Definition Classes
    Apply
  25. def apply6[A, B, C, D, E, FF, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E], ff: ⇒ Kleisli[M, R, FF])(f: (A, B, C, D, E, FF) ⇒ R): Kleisli[M, R, R]

    Definition Classes
    Apply
  26. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E], ff: ⇒ Kleisli[M, R, FF], fg: ⇒ Kleisli[M, R, G])(f: (A, B, C, D, E, FF, G) ⇒ R): Kleisli[M, R, R]

    Definition Classes
    Apply
  27. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E], ff: ⇒ Kleisli[M, R, FF], fg: ⇒ Kleisli[M, R, G], fh: ⇒ Kleisli[M, R, H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): Kleisli[M, R, R]

    Definition Classes
    Apply
  28. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E], ff: ⇒ Kleisli[M, R, FF], fg: ⇒ Kleisli[M, R, G], fh: ⇒ Kleisli[M, R, H], fi: ⇒ Kleisli[M, R, I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): Kleisli[M, R, R]

    Definition Classes
    Apply
  29. val applySyntax: ApplySyntax[[α]Kleisli[M, R, α]]

    Definition Classes
    Apply
  30. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  31. def ask: Kleisli[M, R, R]

    Definition Classes
    KleisliMonadReader → MonadReader
  32. def asks[A](f: (R) ⇒ A): Kleisli[M, R, A]

    Definition Classes
    MonadReader
  33. def bind[A, B](fa: Kleisli[M, R, A])(f: (A) ⇒ Kleisli[M, R, B]): Kleisli[M, R, B]

    Equivalent to join(map(fa)(f)).

    Equivalent to join(map(fa)(f)).

    Definition Classes
    KleisliMonad → Bind
  34. val bindSyntax: BindSyntax[[α]Kleisli[M, R, α]]

    Definition Classes
    Bind
  35. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. def compose[G[_]](implicit G0: Applicative[G]): Applicative[[α]Kleisli[M, R, G[α]]]

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    Definition Classes
    Applicative
  37. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]Kleisli[M, R, G[α]]]

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  38. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]Kleisli[M, R, G[α]]]

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  39. def counzip[A, B](a: \/[Kleisli[M, R, A], Kleisli[M, R, B]]): Kleisli[M, R, \/[A, B]]

    Definition Classes
    Functor
  40. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  41. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  42. def except[A](k: Kleisli[M, R, A])(h: (Throwable) ⇒ Kleisli[M, R, A]): Kleisli[M, R, A]

    Executes the handler if an exception is raised.

    Executes the handler if an exception is raised.

    Definition Classes
    KleisliCatchIOMonadCatchIO
  43. def filterM[A](l: List[A])(f: (A) ⇒ Kleisli[M, R, Boolean]): Kleisli[M, R, List[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  44. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  45. def flip: Applicative[[α]Kleisli[M, R, α]]

    An Applicative for F in which effects happen in the opposite order.

    An Applicative for F in which effects happen in the opposite order.

    Definition Classes
    Applicative
  46. def fpair[A](fa: Kleisli[M, R, A]): Kleisli[M, R, (A, A)]

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  47. def fproduct[A, B](fa: Kleisli[M, R, A])(f: (A) ⇒ B): Kleisli[M, R, (A, B)]

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  48. def functorLaw: FunctorLaw

    Definition Classes
    Functor
  49. val functorSyntax: FunctorSyntax[[α]Kleisli[M, R, α]]

    Definition Classes
    Functor
  50. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  51. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  52. def ifM[B](value: Kleisli[M, R, Boolean], ifTrue: ⇒ Kleisli[M, R, B], ifFalse: ⇒ Kleisli[M, R, B]): Kleisli[M, R, B]

    if lifted into a binding.

    if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

    Definition Classes
    Bind
  53. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  54. def join[A](ffa: Kleisli[M, R, Kleisli[M, R, A]]): Kleisli[M, R, A]

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Definition Classes
    Bind
  55. def lift[A, B](f: (A) ⇒ B): (Kleisli[M, R, A]) ⇒ Kleisli[M, R, B]

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  56. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (Kleisli[M, R, A], Kleisli[M, R, B], Kleisli[M, R, C], Kleisli[M, R, D], Kleisli[M, R, E], Kleisli[M, R, FF], Kleisli[M, R, G], Kleisli[M, R, H], Kleisli[M, R, I], Kleisli[M, R, J]) ⇒ Kleisli[M, R, R]

    Definition Classes
    Apply
  57. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (Kleisli[M, R, A], Kleisli[M, R, B], Kleisli[M, R, C], Kleisli[M, R, D], Kleisli[M, R, E], Kleisli[M, R, FF], Kleisli[M, R, G], Kleisli[M, R, H], Kleisli[M, R, I], Kleisli[M, R, J], Kleisli[M, R, K]) ⇒ Kleisli[M, R, R]

    Definition Classes
    Apply
  58. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (Kleisli[M, R, A], Kleisli[M, R, B], Kleisli[M, R, C], Kleisli[M, R, D], Kleisli[M, R, E], Kleisli[M, R, FF], Kleisli[M, R, G], Kleisli[M, R, H], Kleisli[M, R, I], Kleisli[M, R, J], Kleisli[M, R, K], Kleisli[M, R, L]) ⇒ Kleisli[M, R, R]

    Definition Classes
    Apply
  59. def lift2[A, B, C](f: (A, B) ⇒ C): (Kleisli[M, R, A], Kleisli[M, R, B]) ⇒ Kleisli[M, R, C]

    Definition Classes
    Apply
  60. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (Kleisli[M, R, A], Kleisli[M, R, B], Kleisli[M, R, C]) ⇒ Kleisli[M, R, D]

    Definition Classes
    Apply
  61. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (Kleisli[M, R, A], Kleisli[M, R, B], Kleisli[M, R, C], Kleisli[M, R, D]) ⇒ Kleisli[M, R, E]

    Definition Classes
    Apply
  62. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (Kleisli[M, R, A], Kleisli[M, R, B], Kleisli[M, R, C], Kleisli[M, R, D], Kleisli[M, R, E]) ⇒ Kleisli[M, R, R]

    Definition Classes
    Apply
  63. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (Kleisli[M, R, A], Kleisli[M, R, B], Kleisli[M, R, C], Kleisli[M, R, D], Kleisli[M, R, E], Kleisli[M, R, FF]) ⇒ Kleisli[M, R, R]

    Definition Classes
    Apply
  64. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (Kleisli[M, R, A], Kleisli[M, R, B], Kleisli[M, R, C], Kleisli[M, R, D], Kleisli[M, R, E], Kleisli[M, R, FF], Kleisli[M, R, G]) ⇒ Kleisli[M, R, R]

    Definition Classes
    Apply
  65. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (Kleisli[M, R, A], Kleisli[M, R, B], Kleisli[M, R, C], Kleisli[M, R, D], Kleisli[M, R, E], Kleisli[M, R, FF], Kleisli[M, R, G], Kleisli[M, R, H]) ⇒ Kleisli[M, R, R]

    Definition Classes
    Apply
  66. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (Kleisli[M, R, A], Kleisli[M, R, B], Kleisli[M, R, C], Kleisli[M, R, D], Kleisli[M, R, E], Kleisli[M, R, FF], Kleisli[M, R, G], Kleisli[M, R, H], Kleisli[M, R, I]) ⇒ Kleisli[M, R, R]

    Definition Classes
    Apply
  67. def liftIO[A](ioa: IO[A]): Kleisli[M, R, A]

    Definition Classes
    KleisliLiftIOLiftIO
  68. val liftIOSyntax: LiftIOSyntax[[α]Kleisli[M, R, α]]

    Definition Classes
    LiftIO
  69. def local[A](f: (R) ⇒ R)(fa: Kleisli[M, R, A]): Kleisli[M, R, A]

    Definition Classes
    KleisliMonadReader → MonadReader
  70. def map[A, B](fa: Kleisli[M, R, A])(f: (A) ⇒ B): Kleisli[M, R, B]

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    KleisliFunctor → Functor
  71. def mapply[A, B](a: A)(f: Kleisli[M, R, (A) ⇒ B]): Kleisli[M, R, B]

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  72. val monadIOSyntax: MonadIOSyntax[[α]Kleisli[M, R, α]]

    Definition Classes
    MonadIO
  73. def monadLaw: MonadLaw

    Definition Classes
    Monad
  74. val monadSyntax: MonadSyntax[[α]Kleisli[M, R, α]]

    Definition Classes
    Monad
  75. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  76. final def notify(): Unit

    Definition Classes
    AnyRef
  77. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  78. def point[A](a: ⇒ A): Kleisli[M, R, A]

    Definition Classes
    KleisliApplicative → Applicative
  79. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](Kleisli[M, R, α], G[α])]

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    Definition Classes
    Applicative
  80. def product[G[_]](implicit G0: Apply[G]): Apply[[α](Kleisli[M, R, α], G[α])]

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  81. def product[G[_]](implicit G0: Functor[G]): Functor[[α](Kleisli[M, R, α], G[α])]

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  82. def pure[A](a: ⇒ A): Kleisli[M, R, A]

    Definition Classes
    Applicative
  83. def replicateM[A](n: Int, fa: Kleisli[M, R, A]): Kleisli[M, R, List[A]]

    Performs the action n times, returning the list of results.

    Performs the action n times, returning the list of results.

    Definition Classes
    Applicative
  84. def replicateM_[A](n: Int, fa: Kleisli[M, R, A]): Kleisli[M, R, Unit]

    Performs the action n times, returning nothing.

    Performs the action n times, returning nothing.

    Definition Classes
    Applicative
  85. def scope[A](k: R)(fa: Kleisli[M, R, A]): Kleisli[M, R, A]

    Definition Classes
    MonadReader
  86. def sequence[A, G[_]](as: G[Kleisli[M, R, A]])(implicit arg0: Traverse[G]): Kleisli[M, R, G[A]]

    Definition Classes
    Applicative
  87. def sequence1[A, G[_]](as: G[Kleisli[M, R, A]])(implicit arg0: Traverse1[G]): Kleisli[M, R, G[A]]

    Definition Classes
    Apply
  88. def strengthL[A, B](a: A, f: Kleisli[M, R, B]): Kleisli[M, R, (A, B)]

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  89. def strengthR[A, B](f: Kleisli[M, R, A], b: B): Kleisli[M, R, (A, B)]

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  90. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  91. def toString(): String

    Definition Classes
    AnyRef → Any
  92. def traverse[A, G[_], B](value: G[A])(f: (A) ⇒ Kleisli[M, R, B])(implicit G: Traverse[G]): Kleisli[M, R, G[B]]

    Definition Classes
    Applicative
  93. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ Kleisli[M, R, B])(implicit G: Traverse1[G]): Kleisli[M, R, G[B]]

    Definition Classes
    Apply
  94. def tuple2[A, B](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B]): Kleisli[M, R, (A, B)]

    Definition Classes
    Apply
  95. def tuple3[A, B, C](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: Kleisli[M, R, C]): Kleisli[M, R, (A, B, C)]

    Definition Classes
    Apply
  96. def tuple4[A, B, C, D](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D]): Kleisli[M, R, (A, B, C, D)]

    Definition Classes
    Apply
  97. def tuple5[A, B, C, D, E](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D], fe: ⇒ Kleisli[M, R, E]): Kleisli[M, R, (A, B, C, D, E)]

    Definition Classes
    Apply
  98. def void[A](fa: Kleisli[M, R, A]): Kleisli[M, R, Unit]

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  99. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  100. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  101. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Deprecated Value Members

  1. def map2[A, B, C](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B])(f: (A, B) ⇒ C): Kleisli[M, R, C]

    Definition Classes
    Apply
    Annotations
    @deprecated
    Deprecated

    (Since version 7) given F: Apply[F] use F(a,b)(f) instead, or given implicitly[Apply[F]], use ^(a,b)(f)

  2. def map3[A, B, C, D](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C])(f: (A, B, C) ⇒ D): Kleisli[M, R, D]

    Definition Classes
    Apply
    Annotations
    @deprecated
    Deprecated

    (Since version 7) given F: Apply[F] use F(a,b,c)(f) instead, or given implicitly[Apply[F]], use ^(a,b,c)(f)

  3. def map4[A, B, C, D, E](fa: ⇒ Kleisli[M, R, A], fb: ⇒ Kleisli[M, R, B], fc: ⇒ Kleisli[M, R, C], fd: ⇒ Kleisli[M, R, D])(f: (A, B, C, D) ⇒ E): Kleisli[M, R, E]

    Definition Classes
    Apply
    Annotations
    @deprecated
    Deprecated

    (Since version 7) given F: Apply[F] use F(a,b,c,d)(f) instead, or given implicitly[Apply[F]], use ^(a,b,c,d)(f)

  4. def zip: Zip[[α]Kleisli[M, R, α]]

    scalaz.Zip derived from tuple2.

    scalaz.Zip derived from tuple2.

    Definition Classes
    Apply
    Annotations
    @deprecated
    Deprecated

    (Since version 7.1.0) Apply#zip produces unlawful instances

Inherited from KleisliMonadReader[M, R]

Inherited from KleisliMonad[M, R]

Inherited from KleisliApplicative[M, R]

Inherited from KleisliApply[M, R]

Inherited from KleisliFunctor[M, R]

Inherited from MonadReader[[s, a]Kleisli[M, s, a], R]

Inherited from KleisliLiftIO[M, R]

Inherited from MonadCatchIO[[α]Kleisli[M, R, α]]

Inherited from MonadIO[[α]Kleisli[M, R, α]]

Inherited from Monad[[α]Kleisli[M, R, α]]

Inherited from Bind[[α]Kleisli[M, R, α]]

Inherited from Applicative[[α]Kleisli[M, R, α]]

Inherited from Apply[[α]Kleisli[M, R, α]]

Inherited from Functor[[α]Kleisli[M, R, α]]

Inherited from LiftIO[[α]Kleisli[M, R, α]]

Inherited from AnyRef

Inherited from Any

Ungrouped