scalaz

LeibnizFunctions

trait LeibnizFunctions extends AnyRef

Source
Leibniz.scala
Linear Supertypes
AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LeibnizFunctions
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def force[L, H >: L, A >: L <: H, B >: L <: H]: Leibniz[L, H, A, B]

    Unsafe coercion between types.

    Unsafe coercion between types. force abuses asInstanceOf to explicitly coerce types. It is unsafe, but needed where Leibnizian equality isn't sufficient

  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. def lift[LA, LT, HA >: LA, HT >: LT, T[_ >: LA <: HA] >: LT <: HT, A >: LA <: HA, A2 >: LA <: HA](a: Leibniz[LA, HA, A, A2]): Leibniz[LT, HT, T[A], T[A2]]

    We can lift equality into any type constructor

  16. def lift2[LA, LB, LT, HA >: LA, HB >: LB, HT >: LT, T[_ >: LA <: HA, _ >: LB <: HB] >: LT <: HT, A >: LA <: HA, A2 >: LA <: HA, B >: LB <: HB, B2 >: LB <: HB](a: Leibniz[LA, HA, A, A2], b: Leibniz[LB, HB, B, B2]): Leibniz[LT, HT, T[A, B], T[A2, B2]]

    We can lift equality into any type constructor

  17. def lift3[LA, LB, LC, LT, HA >: LA, HB >: LB, HC >: LC, HT >: LT, T[_ >: LA <: HA, _ >: LB <: HB, _ >: LC <: HC] >: LT <: HT, A >: LA <: HA, A2 >: LA <: HA, B >: LB <: HB, B2 >: LB <: HB, C >: LC <: HC, C2 >: LC <: HC](a: Leibniz[LA, HA, A, A2], b: Leibniz[LB, HB, B, B2], c: Leibniz[LC, HC, C, C2]): Leibniz[LT, HT, T[A, B, C], T[A2, B2, C2]]

    We can lift equality into any type constructor

  18. def lower[LA, HA >: LA, T[_ >: LA <: HA], A >: LA <: HA, A2 >: LA <: HA](t: ===[T[A], T[A2]]): Leibniz[LA, HA, A, A2]

    Emir Pasalic's PhD thesis mentions that it is unknown whether or not ((A,B) === (C,D)) => (A === C) is inhabited.

    Emir Pasalic's PhD thesis mentions that it is unknown whether or not ((A,B) === (C,D)) => (A === C) is inhabited.

    Haskell can work around this issue by abusing type families as noted in Leibniz equality can be injective (Oleg Kiselyov, Haskell Cafe Mailing List 2010) but we instead turn to force.

  19. def lower2[LA, HA >: LA, LB, HB >: LB, T[_ >: LA <: HA, _ >: LB <: HB], A >: LA <: HA, A2 >: LA <: HA, B >: LB <: HB, B2 >: LB <: HB](t: ===[T[A, B], T[A2, B2]]): (Leibniz[LA, HA, A, A2], Leibniz[LB, HB, B, B2])

  20. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  21. final def notify(): Unit

    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  23. implicit def refl[A]: Leibniz[A, A, A, A]

    Equality is reflexive -- we rely on subtyping to expand this type

  24. implicit def subst[A, B](a: A)(implicit f: ===[A, B]): B

  25. def symm[L, H >: L, A >: L <: H, B >: L <: H](f: Leibniz[L, H, A, B]): Leibniz[L, H, B, A]

    Equality is symmetric

  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  27. def toString(): String

    Definition Classes
    AnyRef → Any
  28. def trans[L, H >: L, A >: L <: H, B >: L <: H, C >: L <: H](f: Leibniz[L, H, B, C], g: Leibniz[L, H, A, B]): Leibniz[L, H, A, C]

    Equality is transitive

  29. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. implicit def witness[A, B](f: ===[A, B]): (A) ⇒ B

    We can witness equality by using it to convert between types We rely on subtyping to enable this to work for any Leibniz arrow

Inherited from AnyRef

Inherited from Any

Ungrouped